Numerical Analysis Multiple Choice Questions Answers

Dive into NA MCQs 01, a collection of 68 crucial multiple-choice questions. Mastery of these questions is highly advantageous for success in various assessments. Engage with them to significantly enhance your test performance.

This page consist of mcq on numerical methods with answers , mcq on bisection method, numerical methods objective, multiple choice questions on interpolation, mcq on mathematical methods of physics, multiple choice questions on , ,trapezoidal rule , computer oriented statistical methods mcq and mcqs of gaussian elimination method
We study Numerical Analysis for the preparation of mathematics for the purpose of M.Phil Math, P.hD math, EDUCATORS, LECTURER, SS, SSS, PPSC, FPSC tests. our team try ourselves best to touch every topic of Numerical Analysis to provide concept at all.

Note: You can also give valuable suggestions for the improvements of this subject.

1. By using Newton-Raphson method to solve \dpi{120} \small \sqrt{12}, the correct answer up to three decimal places is

 
 
 
 

2. Newton’s method has ____________ convergence

 
 
 
 

3. By using False position 2nd approximation of \dpi{120} \small x^2-x-1=0 is

 
 
 
 

4. The Regula False method is somewhat similar to

 
 
 
 

5. The Approximate value of \dpi{120} \small \int_{0}^{1} x^3 dx when n=3 using Trapezoidal rule is

 
 
 
 

6. Relative error = ?

 
 
 
 

7. Round off error occurers when 2.987654 is rounded off up to 5 significant digits is

 
 
 
 

8. By using iterative process  \dpi{120} \small x_{n+1}=\frac{1}{2}(x_n + \frac{N}{x_n}), the positive root of 278 to five significant figures is

 
 
 
 

9. To find the root of equation f(x)=0  in (a,b) , the false position method is given as

 
 
 
 

10. The rate of convergence of secant method is

 
 
 
 

11. The error in Trapezoidal rule is of order of

 
 
 
 

12. By using Simpson’s rule, the value of integral \dpi{120} \small \int_{0}^{1} \frac{1}{1+x^2}dx==

 
 
 
 

13. The order of convergence of iteration method is

 
 
 
 

14. The formula \dpi{120} \small \int_{x_o}^{x_o + nh} f(x)dx=h[ny_o+\frac{n^2}{2}\Delta y_o+\frac{1}{2}(\frac{n^3}{3}-\frac{n^2}{2})\Delta^2 y_o+ \frac{1}{6}(\frac{n^4}{4}-n^3+n^2)\Delta^2 y_o+...] is known as

 
 
 
 

15. If \dpi{120} \small f(x_n).f(x_{n-1})<0, then compute New iteration \dpi{120} \small x_{n+1} when lies b/w

 
 
 
 

16. Which of the following is iterative method

 
 
 
 

17. Method of factorization is also known as

 
 
 
 

18. Simpson’s rule was exact when applied to any polynomial of

 
 
 
 

19. The equation \dpi{120} \small x^2 +3x+1=0 is known as

 
 
 
 

20. The roots of equation \dpi{120} \small x^3-x-9=0 near x= 2 correct to three decimal places by using Newton-Raphson method

 
 
 
 

21. The process of convergence in iterative method is faster than in

 
 
 
 

22. The rate of convergence of Guass-Seidal is twice that of

 
 
 
 

23. The number of significant figures in 48.710000

 
 
 
 

24. Newton’s method fails to find the root of f(x)=0 if

 
 
 
 

25. To find the roots of equation f(x) , Newton’s Iterative formula is

 
 
 
 

26. The symbol used for  forward diffefence operator is

 
 
 
 

27. By solving \dpi{120} \small x^2-2x-4=0 for x near 3 using iterative process , the correct answer up to three decimal places is

 
 
 
 

28. By using False position method , the 2nd approximation of root of f(x)=0 is

 
 
 
 

29. which method is known as Regula-Falsi method

 
 
 
 

30. Every square matrix can be expressed as product of lower triangular and unit upper triangular matrix _________ method based on this fact

 
 
 
 

31. The symbol used for backward difference operator

 
 
 
 

32. Bisection method is also known as

 
 
 
 

33. The False position 2nd approximation of \dpi{120} \small x^3-9x+1=0 between 2 and 4 is

 
 
 
 

34. Newton Raphson Formula is derived from

 
 
 
 

35. The fixed iterative method has ________ converges

 
 
 
 

36. The Newton-Raphson method  fails if in the neighborhood of root

 
 
 
 

37. The error in Simpson’s 1/3 rule is of order of

 
 
 
 

38. Gauss- Serial iterative method is used to solve

 
 
 
 

39. By using Newton-Raphson method  the root b/w 0 and 1  by first approx. of \dpi{120} \small x^3-6x+4=0 is

 
 
 
 

40. To solve \dpi{120} \small x^3 -x-9=0  for x near 2 ,with Newton’s method, the correct answer up to three decimal places is

 
 
 
 

41. \dpi{120} \small sin x + e^x is

 
 
 
 

42. The symbol used for shift operator

 
 
 
 

43. The % error in approximating \dpi{120} \small \frac{4}{3} by 1.33 is ________%

 
 
 
 

44. The fixed point iteration method defined as \dpi{120} \small x_{n+1}=g(x_n) converges if

 
 
 
 

45. Which of the followong is modefication of Guass-Jocobi method

 
 
 
 

46. The method of false position is also known as

 
 
 
 

47. The equation \dpi{120} \small x^3 - log_{10}x + sin x =0 is known as

 
 
 
 

48. The error in Simpson’s rule when approximating \dpi{120} \small \int_{1}^{3} \frac{dx}{x} is less than

 
 
 
 

49. To solve \dpi{120} \small x^2 - x -2=0 by Newton-Raphson method  we choose \dpi{120} \small x_o=1, then value of \dpi{120} \small x_2 is

 
 
 
 

50. By v using iterative process \dpi{120} \small x_{n+1}=\frac{1}{2}(x_o + \frac{N}{x_n}), the positive square root of 102 correct to four decimal places is

 
 
 
 

51. In Simpson’s 1/3 rule , curve of y= f(x) is considered to be a

 
 
 
 

52. The symbol used for average operator

 
 
 
 

53.

  1. If \dpi{120} \small \frac{5}{6} ≅ 0.8333 then percentage error is __________ %
 
 
 
 

54. The value of \dpi{120} \small \int_{1}^{10} x^2 using Trapezoidal rule is

 
 
 
 

55. The smallest +ve root of \dpi{120} \small x^3-5x+3=0  lies between

 
 
 
 

56. The method of successive approximation is known as

 
 
 
 

57. To evaluate \dpi{120} \small \int_{0}^{1} f(x) dx approximately  which of the following method is used  when the value of f(x) is given only at \dpi{120} \small x=0,\frac{1}{3},\frac{2}{3}, 0

 
 
 
 

58. Relaxation method is known as

 
 
 
 

59. Which of the following is the modification of Guass Elimination method

 
 
 
 

60. Newton-Raphson method to solve equation having formula

 
 
 
 

61. Sum of roots of equation \dpi{120} \small x^3 - 7x^2+14x-8=0 is

 
 
 
 

62. The root of \dpi{120} \small x^4 -x-10=0 by using Newton-Raphson 2nd approximation correct answer up to three decimal places is

 
 
 
 

63. Numerical solutions of linear algebraic equations can be obtained by

 
 
 
 

64. Using bisection method , the real roots of \dpi{120} \small x^3 -9x+1=0 between x=2 and x=4 is near to

 
 
 
 

65. In simpson 1/3 rule, if the interval is reduced by 1/3 rd then the truncation error is reduced to

 
 
 
 

66. The number of significant figures in 0.021444 is

 
 
 
 

67. The rate of convergence of bisection method is

 
 
 
 

68. The number of significant digits in 8.00312

 
 
 
 

Vector and tensor analysis mcqs with answers

Useful Links:

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top