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1 Introduction

1.1 How to use this book

You will not gain much by just reading this booklet. Have pencil and paper ready to work
through the examples before reading their solutions. Do all the exercises. It is important
that you try hard to complete the exercises on your own, rather than refer to the solutions
as soon as you are stuck.

1.2 Introduction

This unit is designed to help you learn, or revise, trigonometric identities.

You need to know these identities, and be able to use them confidently. They are used
in many different branches of mathematics, including integration, complex numbers and
mechanics.

The best way to learn these identities is to have lots of practice in using them. So we

remind you of what they are, then ask you to work through examples and exercises. We’ve
tried to select exercises that might be useful to you later, in your calculus unit of study.

1.3 Objectives

By the time you have worked through this workbook you should

e be familiar with the trigonometric functions sin, cos, tan, sec, csc and cot, and with the
relationships between them,

e know the identities associated with sin?@ + cos? 0 = 1,

e know the expressions for sin, cos, tan of sums and differences of angles,

e be able to simplify expressions and verify identities involving the trigonometric functions,
e know how to differentiate all the trigonometric functions,

e know expressions for sin 26, cos 26, tan 26 and use them in simplifying trigonometric
functions,

e know how to reduce expressions involving powers and products of trigonometric func-
tions to simple forms which can be integrated.
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1.4 Pretest

We shall assume that you are familiar with radian measure for angles, and with the
definitions and properties of the trigonometric functions sin, cos, tan. This test is included
to help you check how well you remember these.

1. Express in radians angles of

1. 60° ii. 135° . 270°

2. Express in degrees angles of

. T . 3T 5
1. 1 ii. 5 1. T
3. What are the values of

. LT . 3r ¢ 3T

1. sin — il. CcOS — 1. an —
2 2 4
7 5

iv. sin % V. cos ?ﬁ vi. tan 27

4. Sketch the graph of y = cosz.

2 Relations between the trigonometric functions

Recall the definitions of the trigonometric functions by means of the unit circle, 2* + y* = 1.

sinff = y \(x,y)

cos) = =z

tanfd =

SRS

Three more functions are defined in terms of these, secant (sec), cosecant (cosec or csc)
and cotangent (cot).

1
f = 1
bee cos ()
1
§ = 2
os¢ sin 0 (2)
1
cotf = (3)
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The functions cos and sin are the basic ones. Each of the others can be expressed in terms
of these. In particular

sin 6

tanf = 4
an cos 6 (4)
cos 6
t0 = 5
0 sin @ (5)

These relationships are identities, not equations. An equation is a relation between func-
tions that is true only for some particular values of the variable.

i
For example, the relation sin @ = cos f is an equation, since it is satisfied when 6 = T but
not for other values of 6 between 0 and .

inf
On the other hand, tanf = S

7 is true for all values of 6, so this is an identity.
cos

The relationships (1) to (5) above are true for all values of 6, and so are identities. They
can be used to simplify trigonometric expressions, and to prove other identities. Usually
the best way to begin is to express everything in terms of sin and cos.

Examples

1. Simplify the function cosz tan x.

sinx

cosrtanx = cosx X
cos T

= sinx

2. Show that M =sinftané.
csc O + cot O

To show that an identity is true, we have to prove that the left hand side and the
right hand side are different ways of writing the same function. We usually do this
by starting with one side and using the identities we know to transform it until we
obtain the expression on the other side.

. : sin 0
sin@ + tan @ B sin 6 + o
- 1 cos 6

cscl + cot 0 IRy

(sin @ cos 6 + sin 6) " sin 0
1+ cost cos 6

sin? §(1 + cos )
cos (1 + cos6)
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sin? 6

cos

= sinftanf

Exercises 1
1. Simplify

a. sinzcotx

cscl
b. —
sec

sinx + tanx
c. ———
1+secx

2. Show that
cotf +1 1+ tan@
a. =
cotd —1 1 —tané

cotx +1
. ———————— =c¢Scx
ST + cosx
sin x
c. (I1+tanx) —  =tanz.

sinx + cosx

3 The Pythagorean identities

Remember that Pythagoras’ theorem states that in any right angled triangle, the square
on the hypotenuse is equal to the sum of the squares on the other two sides.

In the right angled triangle OAB, x = cos# and y = sin6, so

cos®0 +sin®0 = 1 (6).
\A(x, v
! y
0
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Remember that cos? § means (cos #)? = cos 6 cos 6.

Two other important identities can be derived from this one.
Dividing both sides of (6) by cos? § we obtain
cos’ sin’f 1

cos2f  cos?f  cos?0

ie 1+ tan? 6 = sec” 0.
If we divide both sides of (6) by sin? 8 we get
cos?f  sin?0 1

sin6  sin®#  sin’46

ie cot? @ + 1 = csc? 4.

Summarising,
cos’f +sin*0 = 1 (6)
1+tan®d = sec’f (7)
cot?’0+1 = csc?f (8)
Examples
sec? 0
1. Simplify the expression ———.
sec26 — 1
sec? 0 _ sec’d
sec2 —1  tan?d
1
__ cos26
o sin? 0
cos? 6
B 1
-~ sin?4
= csc?d
2. Show that
1 —2cos?d
—————— = tanf — cotf.
sin 6 cos 0
iné 0
tanf —cotf = i cos

cos@ sinf
sin? 6 — cos? 0
sin 0 cos 0

1 —2cos?d
sinfcosf
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Exercises 2

1. Simplify
1
a. —
tanx + cotx

b. (1 —sin®t)(1 + tan®t)

14 cos@ n cosf — 1
secl —tanf  sech +tanf’

2. Show that
a. sin*f —cos*f =1—2cos?0

b. tanzcscx = tanzsinx + cosz

1+ sech B tan 6
tanf  sech —1°

Remember that you used these identities in finding the derivatives of tan, sec, csc and
cot.

d
Recall that %(Sin x) = cosx and %(cos r) = —sinx.

Then

i(ta ) = i(sinx)
dx R = dx \coszx

cos x cos & — sin x(— sin z)

cos? x

cos? x + sin® x

cos? x
B 1
 cos?z
= sec?r.
Exercises 3
Find
d d d
L. %(cot x), 2. %(SGC[E), 3. %(CSCJ?).
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4 Sums and differences of angles

A number of useful identities depend on the expressions for sin(a + () and cos(a — 3).

We shall state these expressions, then show how they can be derived.

sin(a + ) = sinacos 3+ cosasin 3 9)
cos(a + ) = cosacos — sinasin (10)
sin( — ) = sinacosf — cosasin 3 (11)
cos(aw — f) = cosacosf+sinasin 3 (12)
The expressions for sin(a + ), sin(a — ) and cos(a + ) can all be derived from the

expression for cos(aw — (3). We derive that expression first.

Look at the two diagrams below containing the angle (a — ). We assume « is greater
than 3.

We draw o and 3 in standard position We draw the angle o« — [ in standard
(ie from the positive x-axis), and let A position and let A’ be the point where
and B be the points where the terminal its terminal side cuts the unit circle.
sides of o and 3 cut the unit circle.

Al
A
a
/_\
arp ap
B B
¢] (¢]
A is the point (cos «, sin a). A’ is the point (cos(a — (), sin(a — (3)).
B is the point (cos 3, sin ). B’ is the point (1,0).

The triangles OAB and OA’B’ are congruent, since triangle OA’B’ is obtained by rotating
OAB until OB lies along the x-axis. Therefore AB and A’B’ are equal in length.

Recall that the distance between two points P(x1,y1) and Q(z, y2) is given by the formula
(PQ)* = (z2 — 1)* + (1o — 1)*.
So the distance AB is given by
(AB)*> = (cos3 — cosa)? + (sinf — sina)?

= cos? 3 — 2cosacos 3+ cos® a+ sin? f — 2sin asin 5 + sin?

= 2—2cosacos — 2sinasin 3.
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The distance A’'B’ is given by
(WB)? = (cos(a— ) — 1)? + (sin(a — B))?

= cos*(a— ) — 2cos(a — ) + 1 + sin®*(a — 3)
= 2—2cos(a—f3).

These distances are equal so

2—2cos(a—f) = 2—2cosacosf —2sinasinf

cos(a — 3) = cosacos 3+ sinasin 3.

From this we can derive expressions for cos(a + [3), sin(a + 3) and sin(a — f3).

In order to do this we need to know the following results:

sin(—f) = —sinf
(x.y)
cos(—0) = cosb
0
O
(x:—y)
and
sin(f) = cos(%—@)
m-0
T 2
cos(f) = sin(g—ﬁ).
0
Now

cos(a+ ) = cos(a—(—0))
= cosacos(—0) + sinasin(—/)

= cosacos — sinasin 3
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sin(a + ) = cos[g —

(a+ )
= cos|(5; )~ 4]

= cos(g — o) cos [+ Sin(g —a)sin 3

= sinacos 3 + cos asin 3

sin(ow — ) = sin(a + (=F))
= sinacos(—/f) + cos asin(—/)
= sinacosf — cosasin .

These formulae can be used in many different ways.

Examples

1. Simplify sin(a + b) + sin(a — b).

sin(a +b) +sin(a —b) = sinacosb+ cosasinb+ sinacosb — cosasinb

= 2sinacosb.
2. Prove sin(§ + ) = cos 0 using the addition formulae.

sin(g—i-g) = singcosé)%—cosgsin@
= 1xcosf+0 xsinf.

= cosf.

Exercises 4

1. Simplify
a.
sin(A + B) —sin(A — B)
sin Asin B
b.
cos(A + B) + cos(A — B)
cos Acos B
c.

cos(A + B) — cos(A — B)
cos Asin B '
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Expressions for tan(A + B) and tan(A — B) follow in a straightforward way. Try to derive

them for yourself first.

tan(A+ B) =

sin Acos B + cos Asin B

sin(A + B)
cos(A+ B)

cos Acos B —sin Asin B

sin A cos B =+

cos Asin B

cos Acos B

cos A cos B

cosAcos B

sin Asin B

cos Acos B

cos Acos B

tan A + tan B

1—tan Atan B’

tan(A — B) =

sin Acos B — cos Asin B

sin(A — B)
cos(A — B)

cos Acos B + sin Asin B

sin Acos B

cos Asin B

__  cosAcos B

cos Acos B

cos Acos B

cos Acos B + sin Asin B
cos Acos B

tan A — tan B

1+tan Atan B’

Summary

tan A + tan B

tan(A+ B) =

tan A — tan B

1 —tan Atan B

tan(A — B) =

Exercises 5
1. Show that
cot(a + ) =

1+tanAtan B

cotacot f—1

cota +cot §

(13)

(14)

2T T
2. Setting « = — and § = —, write down values of tan «, tan # and verify the expres-

sions for tan(a + ) and tan(a — ).
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5 Double angle formulae

Expressions for the trigonometric functions of 26 follow very easily from the preceding
formulae.

We shall summarise them and ask you to derive them as an exercise.

sin20 = 2sinfcosf (15)
cos20 = cos’f —sin®f (16)
cos20 = 2cos’f—1 (17)
cos20 = 1-—2sin’6 (18)
2tanf
tan20 = ———— 1
an 1 —tan?6 (19)

Example
Show cos20 = 2cos?6 — 1.
cos20 = cos(f+0)
= cosfcosf —sinfsinf
cos® ) — sin®
= cos?f — (1 — cos?h)

= 2cos’h —1.

Exercise Derive the rest of the expressions above.

Example
sin 260
Simplify ———.
Py 1 — cos 20
sin 26 B 2sin 6 cos 6
1—cos20  1—(1—2sin’6)

_ 2sin 6 cost
- 2sin’ 6
= cotd.

Exercises 6
1 +sin(§ — 2z)

1. Simplif .
TP T Zin(z — 22)
1 20
2. Simplify — <2527
sin 20

14+ sin A —cos2A
cos A +sin24

3. Simplify
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6 Applications of the sum, difference, and double an-
gle formulae

A number of relations which are very useful in integration follow from the identities in
sections 4 and 5.

From (17) cos20 = 2cos® 6 — 1 it follows that
9 1
cos ) = 5(1 + cos 20) (20)
and from (15) cos 26 = 1 — 2sin? @ it follows that
. 9 1
sin“f = 5(1 — cos 20) (21)
These identities are very useful in integration. For example
9 1
/COS 0dh = /5(1 + cos 260)d0

6 1
= —+-sin20+C
2 * 4 *
so you need to be expert in using them to simplify expressions.

Example

1
Show that sin® z cos® x = §(1 — cos4x).
.2 2 1 1
sin“xcos‘x = 5(1 — cos 2x) X 5(1 + cos 2z)

1
= (1 —cos®2zx)

4
1 1
1.1 1
= 1(5—500841')

1
= §(1 — cos4x).

Exercises 7
Simplify
1. cos*36

2. sin*é.
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We showed earlier that sin(A + B) + sin(A — B) = 2sin A cos B, so
1
sin Acos B = §(sin(A + B) +sin(A — B)).

Obtain similar expressions for sin Asin B, and cos Acos B by using the expressions for
cos(A + B) and cos(A — B). These relationships are also useful in integration.

Summary
sin Acos B = %(sin(A + B) +sin(A — B)) (22)
cos Asin B = %(sin(A + B) —sin(A — B)) (23)
cos AcosB = %(COS(A + B) 4 cos(A — B)) (24)
sinAsin B = %(COS(A — B) —cos(A+ B)) (25)
Example

Find / sin 62 cos 2xdx.

1
/sin 6xcos2z = 5 /(sin 8z + sindx)dx

1 1
= —1—60088x— gcos4x+C

Exercises 8
Express as sums or differences the following products:

1. sin7zcos3x
2. cos8x cos2x
3. cosb6xsindr
4

sin 4x sin 2x.

7 Self assessment

1. Simplif sin @ csc 6
. Simplify —————.
DU sin? @ + cos? 6

sin @ + sin 6 tan? 0

tand

2. Simplify

3. Simplify sin(?%7T +0).

4. Verify cos*6 — sin* § = cos 26.

sin(A + B) + sin(A — B)
sin(A + B) —sin(A — B)

5. Verify = tan A cot B.
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8 Solutions to exercises

Pretest
T 3 3T
1. — b. — —
a3 4 ¢ 2
2 a 45° b —270° c 360°
3 a 1 b. 0 c —1
d. —% e. % f 0

4. A graph of the function y = cos x.

-1.00 1.00 2.00 3.00

-1.00
Exercises 1
1. a. COS & b. cot 0 C. sinz
Exercises 2
1. a. sin x cos x b. 1 C. 24+ 2tanf
Exercises 3
1. —cotz = —csc®x
dx
2. —secx =secxtanzx
dz
d
3. —cscx = —cscxrcotx
dx
Exercises 4
1. a. 2cot A b. 2 C. —2tan A

Exercises 5

2. tana = —v/3 and tan 3 = V3
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Exercises 6

1. a. cot’x b. coté C. tan A

Exercises 7

1
1. §(3 + 4 cos 66 + cos 126)

1
2. §(3 — 4 cos 20 4 cos 46)

Exercises 8

1

1. é(sin 10z + sin4x)
1

2. §(COS 102 + cos 6x)
L . .

3. §(sm 11z —sinx)

4. 3 (cos2x — cos b)

Self assessment
sin @ csc 6

sin? 6 + cos? 6 -

Use csc = and sin® 6 + cos? 6 = 1.

Sin

sin @ + sin f tan? @

2. = secf
tan 6 See
5 9 sin 6 1
Use 1+ tan“ 6 = sec” 0, tanf = and sec = .
cos cos
. 3T
3. sm(7 +0) = —cosf
T T
Use sin — = —1 and — =0.
se sin and cos —
4.
cos*) —sin*@ = (cos® — sin?6)(cos? § + sin® 0)
= cos20 x1
= cos26.
5.

sin(A + B) +sin(A — B) 2sin A cos B
sin(A + B) —sin(A — B) 2cos Asin B

= tan Acot B.
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